Gene surfing in expanding populations.
نویسندگان
چکیده
Large scale genomic surveys are partly motivated by the idea that the neutral genetic variation of a population may be used to reconstruct its migration history. However, our ability to trace back the colonization pathways of a species from their genetic footprints is limited by our understanding of the genetic consequences of a range expansion. Here, we study, by means of simulations and analytical methods, the neutral dynamics of gene frequencies in an asexual population undergoing a continual range expansion in one dimension. During such a colonization period, lineages can fix at the wave front by means of a "surfing" mechanism [Edmonds, C.A., Lillie, A.S., Cavalli-Sforza, L.L., 2004. Mutations arising in the wave front of an expanding population. Proc. Natl. Acad. Sci. 101, 975-979]. We quantify this phenomenon in terms of (i) the spatial distribution of lineages that reach fixation and, closely related, (ii) the continual loss of genetic diversity (heterozygosity) at the wave front, characterizing the approach to fixation. Our stochastic simulations show that an effective population size can be assigned to the wave that controls the (observable) gradient in heterozygosity left behind the colonization process. This effective population size is markedly higher in the presence of cooperation between individuals ("pushed waves") than when individuals proliferate independently ("pulled waves"), and increases only sub-linearly with deme size. To explain these and other findings, we develop a versatile analytical approach, based on the physics of reaction-diffusion systems, that yields simple predictions for any deterministic population dynamics. Our analytical theory compares well with the simulation results for pushed waves, but is less accurate in the case of pulled waves when stochastic fluctuations in the tip of the wave are important.
منابع مشابه
Deleterious mutations can surf to high densities on the wave front of an expanding population.
There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, w...
متن کاملSurfing in tortoises? Empirical signs of genetic structuring owing to range expansion.
Much of our current knowledge about the genetic dynamics in range expansions originates from models, simulations and microcosm experiments that need to be corroborated by field data. Here, we report a neutral genetic pattern that matches the predictions of the genetic surfing theory. Genetic surfing occurs when repeated founding events and genetic drift act on the wave of advance of an expandin...
متن کاملAllele surfing promotes microbial adaptation from standing variation.
The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adap...
متن کاملThe fate of mutations surfing on the wave of a range expansion.
Many species, including humans, have dramatically expanded their range in the past, and such range expansions had certainly an impact on their genetic diversity. For example, mutations arising in populations at the edge of a range expansion can sometimes surf on the wave of advance and thus reach a larger spatial distribution and a much higher frequency than would be expected in stationary popu...
متن کاملThe Rate of Beneficial Mutations Surfing on the Wave of a Range Expansion
Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theoretical population biology
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2008